
Field Projections

Benno Lossin

1

History of Field Projections

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 2

What are Field Projections?

struct Struct {
 field: Field,
}

fn project(r: &MyStruct) -> &Field {
 &r.field
}

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 3

Raw Pointers

unsafe fn project_raw(
 r: *mut Struct,
) -> *mut Field {
 unsafe { &raw mut (*r).field }
}

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 4

MaybeUninit<T>

fn project_uninit(
 r: &mut MaybeUninit<Struct>,
) -> &mut MaybeUninit<Field> {
 todo!("possible, but verbose")
}

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 5

NonNull<T>

fn project_non_null(ptr: NonNull<MyStruct>) -> NonNull<Foo>;

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 6

VolatilePtr<T>

VolatilePtr<Struct> -> VolatilePtr<Field>

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 7

Untrusted<T>

&mut Untrusted<Struct> -> &mut Untrusted<Field>

&Untrusted<Struct> -> &Untrusted<Field>

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 8

Container-Projections

All of the projections that we have seen so far have the following shape:

Container<'a, Struct> -> Container<'a, Field>

But there are also more complicated projections that change the output of the
projection.

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 9

Complex Projections

In general, a projection can have the following shape:

Container<'a, Struct> -> Output<'a, Field>

Where Output is allowed to depend on the concrete field of the struct.

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 10

Pin<&mut T>

struct MyStruct {
 foo: Foo,
 #[pin]
 bar: Bar,
}

fn project_foo_pin(_: Pin<&mut MyStruct>) -> &mut Foo;

fn project_bar_pin(_: Pin<&mut MyStruct>) -> Pin<&mut Bar>;

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 11

RCU

RCU is a special locking mechanism in the kernel,

RCU can only protect pointers,

RCU protects readers from writers by only changing pointers atomically and
waiting for readers to finish before destroying the allocations,

RCU needs to be combine with another locking mechanism to synchronize
between multiple writers.

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 12

RCU

struct Data {
 // RCU-protected data must be stored in a pointer type wrapped by RCU.
 // internally, this is just an `AtomicPtr<Config>`
 #[pin]
 cfg: Rcu<Box<Config>>,
 // Data that isn't protected by RCU is just stored normally.
 other: i32,
}

struct Config {
 size: usize,
 name: &'static CStr,
}

We store Arc<Mutex<Data>> somewhere in our module & then access it from the
driver.

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 13

RCU (Read)

fn size(data: &rfl::Mutex<Data>) -> usize {
 // `&Mutex<T>` allows projecting to fields of type `Rcu<U>`,
 // but not to other fields (that would be unsound).
 let cfg: &Rcu<Box<Config>> = proj!(data.cfg);
 // now we begin the critical read section of RCU.
 let rcu = rcu::read_lock();
 let cfg: &Config = cfg.get(&rcu);
 cf.size
}

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 14

RCU (Write)

fn set_config(data: &rfl::Mutex<Data>, config: Config) {
 let mut data: MutexGuard<'_, Data> = data.lock();
 // Normal data can just be handled as usual using field projections.
 // (note: the mutex pins its data, so we need projections here)
 *proj!(data.other) = 42;

 // Maybe somewhat surprisingly, we can obtain a `Pin<&mut Rcu<...>>`:
 let cfg: Pin<&mut Rcu<Box<Config>>> = proj!(data.cfg);

 // `Rcu::set` has `Pin<&mut Rcu>` as the receiver, so it can only be called,
 // if the external lock is taken.
 let _old = cfg.set(Box::new(config));

 // When `_old` is dropped, `synchronize_rcu` is executed, waiting for a
 // grace period to end (ie all currently active critical read sections
 // must end). This guarantees that any readers still holding onto a
 // pointer to the contents of `_old` have a valid pointer.
 drop(_old);
}

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 15

Field Projection Operator

Have a new operator for field projections similar to reborrowing references:

fn project(r: &mut MaybeUninit<Struct>) -> &mut MaybeUninit<Field> {
 @mut r->field
}

Lot's of different syntaxes being discussed:

@r->field and @mut r->field

r.ref.@field and r.@field

r.@field.ref and r.@field

@r~field and @mut r~field

r.@field and r.mut@field

just r.@field

And many more sigil options.

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 16

Projections Beyond struct

We can easily extend field projections to:

tuples

arrays

If we add some more features we can also support:

union

enum

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 17

How to Help

You can help with:

Motivation
can existing applications of field projection be useful in your area of code?

do you possibly have additional applications?

Experimentation
when the lang experiment is ready (check status of rust-lang/rust#146307), try
out #![feature(field_projections)] & give feedback

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 18

https://github.com/rust-lang/rust/pull/146307

Questions & Discussion

Kangrejos 2025: Field Projections — Benno Lossin lossin@kernel.org 19

